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Goal: Contribution to Lagrangian Hydro 

Specific objectives include: 

1. Construction of a multi-

dimensional algorithm 

2. Automatic consistency of 

mesh motion and fluxes 

3. Implementation of 

affordable vorticity control 

4. A “clean” algorithm with 

minimal complexity 

Many researchers have shown that cell-centered hydrodynamic algorithms can be 

successful in addressing problems associated with the staggered-grid approach 

 

Areas of continuing interest include, nodal movement, spurious vorticity, 

symmetry preservation, and mesh imprinting 
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Cell-centered 

method with 

vertex fluxes 

Staggered-grid 

Hydro methods 

Godunov-type 

finite volume  

methods 

This work aims to address these issues via a new cell-centered approach 



Mesh Imprinting and Tangling 
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Images:  D. E. Burton, et. al.  Los Alamos 

National Laboratory.  LA-UR-09-03132 
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Spurious Mesh 

Distortion 

Noh  Problem: 

A:  Staggered-grid Hydro, Cartesian 

mesh 

B:  Cell-centered Hydro, Cartesian mesh 

C:  Cell-centered  Hydro, radial mesh 

 



Research Strategy 
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1. Identify a simplified test environment 

2. Use the following tools to address problem areas 

a) Vorticity control 

b) Dispersion analysis 

c) Nonlinear limiters 

d) Increased order of accuracy 

3. Extend lessons learned to the full problem 

𝑢𝑡 + 𝜌0
−1𝑝𝑥 = 0 

𝑣𝑡 + 𝜌0
−1𝑝𝑦 = 0 

𝑝𝑡 + 𝜌0𝑎0
2(𝑢𝑥 + 𝑣𝑦) = 0 2D Acoustics 

• Linear physics 

• Square mesh 

• Intrinsically multidimensional 

Crisis 1:  Mesh Imprinting 

Crisis 2: Overshoots 



Crisis 1: Mesh Imprinting and Tangling 
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Morton and Roe [2] pointed out that  

• the Rotated Richtmeyer (RR) scheme, a Lax-Wendroff (LW) 

variant, creates no spurious vorticity 

• vorticity preservation is not attainable using schemes based on 

one dimensional physics 

• fluxes must be calculated at vertices and averaged over faces 

Additionally, we propose a nonlinear limiter that retains vorticity 

preservation 

Could the RR scheme, with a limiter, form the basis for a 

successful Lagrangian hydro scheme? 

Dukowicz and Meltz [1] implemented vorticity control using a costly first 

order procedure for removing vorticity 

• Effective in solving the Saltzman problem 

Tool: Vorticity Control 



A Lagrangian Friendly Structure 
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When used to solve the acoustic equations, the RR scheme can be interpreted 

as a linearized Lagrangian method  

The full Lagrangian version would look much the same: 

1. Solve the Eulerian equations on grid that moves with the fluid 

a) Calculate nodal fluxes at 𝑛 +
1

2
, leaving 𝑝, 𝑝𝑽 stored at vertices 

b) Move the mesh 

c) Update cells using Trapezium Rule 

2. Momentum and total energy are conserved  

3. A discrete Kelvin Theorem is obeyed on the distorting grid 



Test Problem 
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Notes: 

1. All test problems were computed on a 100x100 square mesh 

unless otherwise noted 

2. A reference solution computed using MUSCL-H on a 600x600 

mesh is included in most plots 

Discontinuous pressure disturbance introduced to a fluid at rest 



Lax-Wendroff  and Rotated Richtmeyer 
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(A) (B) 

𝝎 = 0 𝝎 ≠ 0 

Compact Vorticity after 10 Time Steps, 𝜈 = 0.7: 
 (A) LW  (B) RR 



Lax-Wendroff  and Rotated Richtmeyer 
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RR Improvement over LW, 𝜈 = 0.7: 
 (A) Pressure (B) Velocity Magnitude 

(A) (B) 



Improvements to Rotated Richtmeyer 
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Write the general form of the RR scheme as  

𝑼𝑛+1 = 𝑼𝑛 + 𝑀𝑼𝑛  𝑼 = (𝑝, 𝑢, 𝑣) 

where 

𝑀 =

−
𝜈2

2
(𝜇𝑦

2𝛿𝑥
2 + 𝜇𝑥

2𝛿𝑦
2) 𝜈𝜇𝑥𝜇𝑦

2𝛿𝑥 𝜈𝜇𝑥
2𝜇𝑦𝛿𝑦

𝜈𝜇𝑥𝜇𝑦
2𝛿𝑥 −

𝜈2

2
𝜇𝑦
2𝛿𝑥

2 −
𝜈2

2
𝜇𝑥𝜇𝑦𝛿𝑥𝛿𝑦

 𝜈𝜇𝑥
2𝜇𝑦𝛿𝑦 −

𝜈2
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𝜇𝑥𝜇𝑦𝛿𝑥𝛿𝑦 −
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2

 

Modifications are 

possible 
Modifications not compatible 

with vorticity preservation 

Two free parameters remain 



and then carry out a 2D von Neumann substitution 

Crisis 1: Mesh Imprinting and Tangling 
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𝛼 
𝑥 

𝑦 

𝑇 𝒓 = 𝑔𝒓 
Abs(𝑔) gives amplification factors 

Arg(𝑔) gives phase change 

𝑼𝑛+1 = 𝑼𝑛 + 𝑇𝑼𝑛  

Write the parameterized scheme in the form 

The standard eigenvalue problem can now be recovered and the 

eigenvalues, 𝑔, computed 

Expand the eigenvalues in terms of 𝜃𝑟 and pick free parameters that 

minimize the dependence of the numerical dispersion relations on 𝛼 

Tool: Dispersion Analysis 

Assume solution with a 

plane wave propagating in 

any direction 



New Vorticity Preserving Schemes 
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Increased Isotropy of New Vorticity Preserving Schemes, 𝜈 = 0.6: 

(A) RR No Limiter (B) VPLW1 No Limiter (C) VPLW2 No Limiter 

Max. 

Isotropy 

Full 

Stability 

(A) (B) (C) 

VPLW2 has improved isotropy and maximal stability – write in finite volume 

form (VPFV2) and try to eliminate overshoots with flux limiting 



Crisis 2: Spurious Overshoots 
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Two fundamental questions: 

1. What quantities should be limited? 

a. Conserved variables 

b. Primitive variables 

c. Characteristic variables 

d. Driver quantities ≝ 𝛽 

• Pressure Equation:  𝛽 = 𝛻 ∙ 𝑽 

• Velocity Equation:  𝛽 = |𝛻𝑝| 
 

𝑽𝑡 + 𝜌0
−1𝛻𝑝 = 0 

𝑝𝑡 + 𝜌0𝑎0
2𝛻 ∙ 𝑽 = 0 

Tool:  Nonlinear Limiter 

Need a limiting mechanism that is multidimensional, universal, and 

“intelligent” 

2. How do you define “monotonicity” in greater than one spatial 

dimension or with nonlinear physics? (i.e. How much to limit?) 

• Take inspiration from Flux-corrected Transport (FCT) and use 

“cautious” first order solution 



Choosing a First Order Scheme 
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What do we mean by a “cautious” first order scheme? 

• Ideal method would have minimum diffusion needed to prevent 

spurious extrema, introduce minimal phase error, preserve vorticity, 

and be isotropic 

Consider the 1D Q-schemes for linear advection that use a three point 

stencil: 

𝑢𝑗
𝑛+1 = 𝑢𝑗

𝑛 −
𝜈

2
𝑢𝑗+1

𝑛 − 𝑢𝑗−1
𝑛 +

𝑞

2
𝑢𝑗+1

𝑛 − 2𝑢𝑗
𝑛 + 𝑢𝑗−1

𝑛  

Optimal Diffusion:  First Order Upwind (FUP), 𝑞 = 𝜈  

Optimal Phase:  Low Phase Error Scheme (LPE), 𝑞 =
1+2𝜈2

3
 

Second Order :  Lax-Wendroff Scheme  (LW), 𝑞 = 𝜈2 

Consider the 2D analog of the Q-schemes for the acoustic system: 

𝑼𝑛+1 = 𝑼𝑛 + 𝜈𝑀1 𝑼𝑛 + 𝑞𝑀2𝑼𝑛 



Choosing a First Order Scheme 
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RR FUP: 1D square 

wave traveling 45∘ to 

grid 



Choosing a First Order Scheme 
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Best results to date obtained with VPLW2 weights and 𝑞 = 0.8𝜈 + 0.2𝜈2 

How can we incorporate this first order scheme into a useful limiter? 



Starting Point: FCT 
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FCT in Brief (Boris and Book [3]) 

1. Compute cautious first order step  

2. Compute antidiffusive fluxes (defined using a higher order method) 

3. Correct the antidiffusive fluxes using a nonlinear limiter  

4. Compute final update with the limited antidiffusive fluxes to remove 

as much diffusion as possible 

Original flux limiter was derived for one dimension and was prone to 

clipping 

• Zalesak [4] proposed the first multidimensional flux limiter for 

FCT and also improved the clipping problem 



Starting Point: Flux-corrected Transport (FCT) 
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Traditional flux limiters require a priori bounds to be place on the solution 

in each cell at each time step - usually calculated from spatial neighbors 

Can these disadvantages be 

avoided by a new approach? 

Disadvantages: 

1. No way to calculate “correct” upper and lower bounds ahead of 

time for multidimensional, nonscalar problems  

2. Relying on information taken from spatial neighbors can introduce 

anisotropy 

Stencil 

Wave 

Peak 

Information used to limit wave peak 

varies with position ⇒ ANISOTROPY 



A Vorticity Preserving Approach to Limiting 
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Our new limiter is concerned primarily with temporal changes of the 

vertex fluxes and cannot introduce new anisotropy into the solution 

• Nodal drivers, 𝛽, reflect the specific physics of the problem as 

expressed through the governing equations 

• A first order driver and antidiffusion correction are first 

calculated by the isotropic base schemes 

𝜔
𝜕

𝜕𝑡
𝛽𝐴𝐷 ≤ 𝑓 𝜙, |𝜈|

𝜕

𝜕𝑡
𝛽𝐿  

𝜕

𝜕𝑡
𝛽𝐻 =

𝜕

𝜕𝑡
𝛽𝐿 +

𝜕

𝜕𝑡
𝛽𝐴𝐷 



A Vorticity Preserving Approach to Limiting 
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An “indicator quantity”, 𝜙, and the function 𝑓(𝜙, |𝜈|) can affect the 

solution’s phase and amplitude 

• 𝑓 𝜙, 𝜈 → 𝑓( 𝜈 ) forces the limiter to treat all data as the most 

difficult possible – even if not necessary 

• experimental evidence shows that introducing 𝜙 as an empirical 

measure of complexity can alleviate excessive limiting 

- the difference is not very great, but seems to merit further 

investigation 

- current results will be presented 



Limited Results 
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Comparison of MUSCL-H (𝜈 = 0.4) and VPFV2 with New Limiter (𝜈 = 0.8): 

(A) Pressure  (B) Velocity Magnitude 

(A) (B) 



Limited Results - Smooth Problem 

22 

MUSCL-H (𝜈 = 0.4) and VPFV2 (𝜈 = 0.8), Gaussian Perturbation: 

(A) Pressure (B) Velocity Magnitude 

(A) (B) 



Progress Summary to Date 
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From Lax-Wendroff to VPFV2 with New  Limiter 

LW RR 

VORTICITY CONTROL 



Progress Summary to Date 
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From Lax-Wendroff to VPFV2 with New  Limiter 

RR VPLW2 

DISPERSION ANALYSIS 



Progress Summary to Date 
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From Lax-Wendroff to VPFV2 with New  Limiter 

VPFV2 Limiter Off VPFV2 Limiter On 

NEW LIMITER 

600x600 

Mesh 

600x600 

Mesh 



Conclusions 
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1. Vertex fluxes enable vorticity to be preserved 

and isotropy to be improved 

2. This requires a new form of limiting, which 

must be vertex based 

3. This structure applies directly to Lagrangian 

grids 

4. Within this framework, some flexibility 

remains that allows for detailed 

improvements 



Future Work and Acknowledgements 
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1. Improvements to the limiting mechanism  

2. Third order accuracy 

3. Implement the method for the Euler equations and a Lagrangian 

grid 
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Limited Results - Square Wave 
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MUSCL-H (𝜈 = 0.4 ) and VPFV2  (𝜈 = 0.8): 1D Square Wave 

(initialized in   2D) 



Limited Results - 𝑓 𝜈  
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VPFV2  (𝜈 = 0.8) 

Smooth 

Data 


